3.4.87 \(\int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\) [387]

Optimal. Leaf size=136 \[ -\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {4 \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \]

[Out]

-4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*(cos(1/2*d*
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*sin(d*x+c)/a^2/d/cos(d*x+
c)^(3/2)/(1+sec(d*x+c))-1/3*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^2+4*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/
2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {4349, 3901, 4104, 3872, 3856, 2720, 3853, 2719} \begin {gather*} -\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {4 \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (\sec (c+d x)+1)}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(-4*EllipticE[(c + d*x)/2, 2])/(a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (4*Sin[c + d*x])/(a^2*d*Sqr
t[Cos[c + d*x]]) - (5*Sin[c + d*x])/(3*a^2*d*Cos[c + d*x]^(3/2)*(1 + Sec[c + d*x])) - Sin[c + d*x]/(3*d*Cos[c
+ d*x]^(5/2)*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3901

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Dist[d^2/(a*b*(2*m + 1)),
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[
m])

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\\ &=-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\frac {3 a}{2}-\frac {7}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \left (\frac {5 a^2}{2}-6 a^2 \sec (c+d x)\right ) \, dx}{3 a^4}\\ &=-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{6 a^2}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx}{a^2}\\ &=\frac {4 \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{a^2}\\ &=-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {4 \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {2 \int \sqrt {\cos (c+d x)} \, dx}{a^2}\\ &=-\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {4 \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {5 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.25, size = 393, normalized size = 2.89 \begin {gather*} -\frac {4 i \sqrt {2} e^{-i (c+d x)} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (12 \left (1+e^{2 i (c+d x)}\right )+12 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )-5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^2(c+d x)}{3 d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} (a+a \sec (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {8 \cot \left (\frac {c}{2}\right ) \sec (c)}{d}+\frac {8 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{3 d}+\frac {8 \sec (c) \sec (c+d x) \sin (d x)}{d}+\frac {2 \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(((-4*I)/3)*Sqrt[2]*Cos[c/2 + (d*x)/2]^4*(12*(1 + E^((2*I)*(c + d*x))) + 12*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*
I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*
Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sec[c + d*x]^2)/(d*E^(I*
(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(a + a*Sec[c + d*x])^2) + (Cos[c
/2 + (d*x)/2]^4*((8*Cot[c/2]*Sec[c])/d + (8*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d + (2*Sec[c/2]*Sec[c/2
+ (d*x)/2]^3*Sin[(d*x)/2])/(3*d) + (8*Sec[c]*Sec[c + d*x]*Sin[d*x])/d + (2*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d
)))/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(404\) vs. \(2(176)=352\).
time = 0.12, size = 405, normalized size = 2.98

method result size
default \(-\frac {-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-48 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+86 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-37 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(405\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/6*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1
/2*c)*sin(1/2*d*x+1/2*c)^2+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-5*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2)))*cos(1/2*d*x+1/2*c)-48*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+86*(-2*
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-37*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.74, size = 318, normalized size = 2.34 \begin {gather*} \frac {2 \, {\left (12 \, \cos \left (d x + c\right )^{2} + 19 \, \cos \left (d x + c\right ) + 6\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*(2*(12*cos(d*x + c)^2 + 19*cos(d*x + c) + 6)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(-I*sqrt(2)*cos(d*x + c)^
3 - 2*I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
 c)) - 5*(I*sqrt(2)*cos(d*x + c)^3 + 2*I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(
-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 12*(I*sqrt(2)*cos(d*x + c)^3 + 2*I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*
cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 12*(-I*sqrt(
2)*cos(d*x + c)^3 - 2*I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPIn
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x +
 c))

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(7/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*cos(d*x + c)^(7/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^2),x)

[Out]

int(1/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^2), x)

________________________________________________________________________________________